
Computer Vision System Toolbox™

Getting Started Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Computer Vision System Toolbox™ Getting Started Guide
© COPYRIGHT 2000–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 5.0 (Release 2012a)
September 2012 Online only Revised for Version 5.1 (R2012b)
March 2013 Online only Revised for Version 5.2 (R2013a)
September 2013 Online only Revised for Version 5.3 (R2013b)
March 2014 Online only Revised for Version 6.0 (R2014a)
October 2014 Online only Revised for Version 6.1 (R2014b)
March 2015 Online only Revised for Version 6.2 (Release R2015a)
September 2015 Online only Revised for Version 7.0 (Release R2015b)

v

Contents

Product Overview
1

Computer Vision System Toolbox Product Description 1-2
Key Features . 1-2

Computer Vision Algorithms and Video Processing
2

Computer Vision Capabilities . 2-2

Video Processing in MATLAB . 2-3

Computer Vision System Toolbox Preferences 2-4
Parallel Computing Toolbox Support 2-4

Coordinate Systems
3

Coordinate Systems . 3-2
Pixel Indices . 3-2
Spatial Coordinates . 3-2
3-D Coordinate Systems . 3-3

vi Contents

System Objects
4

What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

System Objects vs. MATLAB Functions 4-5
System Objects vs. MATLAB Functions 4-5
Process Audio Data Using Only MATLAB Functions Code . . 4-5
Process Audio Data Using System Objects 4-6

System Design and Simulation in MATLAB 4-8

System Design and Simulation in Simulink 4-9

System Objects in MATLAB Code Generation 4-10
System Objects in Generated Code 4-10
System Objects in codegen . 4-14
System Objects in the MATLAB Function Block 4-15
System Objects in the MATLAB System Block 4-15
System Objects and MATLAB Compiler Software 4-15

System Objects Methods That Support Code Generation . . 4-16
Code Generation Supported System Objects Methods 4-16
Simulation-Only System Objects Methods 4-16

System Objects in Simulink . 4-18
System Objects in the MATLAB Function Block 4-18
System Objects in the MATLAB System Block 4-18

System Object Methods . 4-19
What Are System Object Methods? 4-19
The Step Method . 4-19
Common Methods . 4-20

System Design in MATLAB Using System Objects 4-22
Create Components for Your System 4-22
Configure Components for Your System 4-23
Assemble Components to Create Your System 4-25
Run Your System . 4-26
Reconfigure Your System During Runtime 4-27

vii

System Design in Simulink Using System Objects 4-29
Define New Kinds of System Objects for Use in Simulink . . 4-29
Test New System Objects in MATLAB 4-34
Add System Objects to Your Simulink Model 4-35

Strategies for Real-Time Video Processing in
Simulink

5
Optimizing Your Implementation . 5-2

Developing Your Models . 5-4

Data Type Support
6

Block Data Type Support . 6-2

Fixed-Point Support for MATLAB System Objects 6-3
Getting Information About Fixed-Point System Objects 6-3
Displaying Fixed-Point Properties . 6-4
Setting System Object Fixed-Point Properties 6-5

1

Product Overview

1 Product Overview

1-2

Computer Vision System Toolbox Product Description
Design and simulate computer vision and video processing systems

Computer Vision System Toolbox provides algorithms, functions, and apps for designing
and simulating computer vision and video processing systems. You can perform feature
detection, extraction, and matching; object detection and tracking; motion estimation;
and video processing. For 3-D computer vision, the system toolbox supports camera
calibration, stereo vision, 3-D reconstruction, and 3-D point cloud processing. With
machine learning based frameworks, you can train object detection, object recognition,
and image retrieval systems. Algorithms are available as MATLAB® functions, System
objects, and Simulink® blocks.

For rapid prototyping and embedded system design, the system toolbox supports fixed-
point arithmetic and C-code generation.

Key Features

• Object detection and tracking, including the Viola-Jones, Kanade-Lucas-Tomasi
(KLT), and Kalman filtering methods

• Training of object detection, object recognition, and image retrieval systems, including
cascade object detection and bag-of-features methods

• Camera calibration for single and stereo cameras, including automatic checkerboard
detection and an app for workflow automation

• Stereo vision, including rectification, disparity calculation, and 3-D reconstruction
• 3-D point cloud processing, including I/O, visualization, registration, denoising, and

geometric shape fitting
• Feature detection, extraction, and matching
• Support for C-code generation and fixed-point arithmetic with code generation

products

2

Computer Vision Algorithms and
Video Processing

• “Computer Vision Capabilities” on page 2-2
• “Video Processing in MATLAB” on page 2-3
• “Computer Vision System Toolbox Preferences” on page 2-4

2 Computer Vision Algorithms and Video Processing

2-2

Computer Vision Capabilities

Computer Vision System Toolbox provides algorithms and tools for the design and
simulation of computer vision and video processing systems. The toolbox includes
algorithms for feature extraction, motion detection, object detection, object tracking,
stereo vision, video processing, and video analysis. Tools include video file I/O, video
display, drawing graphics, and compositing. Capabilities are provided as MATLAB
functions, MATLAB System objects, and Simulink blocks. For rapid prototyping and
embedded system design, the system toolbox supports fixed-point arithmetic and C-code
generation.

The link below provides an overview video of Computer Vision System Toolbox
capabilities and applications:

Computer Vision System Toolbox capabilities

http://www.mathworks.com/videos/computer-vision-system-toolbox-overview-61219.html

 Video Processing in MATLAB

2-3

Video Processing in MATLAB

Computer Vision System Toolbox provides algorithms and tools for video processing
workflows. You can read and write from common video formats, perform common video
processing algorithms such as deinterlacing and chroma-resampling, and display results
with text and graphics burnt in to the video. Video processing in MATLAB uses System
objects, which avoids excessive memory use by streaming data to and from video files.

The link below provides an introduction video to a typical workflow for motion
estimation:
Video processing in MATLAB

http://www.mathworks.com/videos/video-processing-in-matlab-68745.html

2 Computer Vision Algorithms and Video Processing

2-4

Computer Vision System Toolbox Preferences

To open Computer Vision System Toolbox preferences, on the Home tab, in the
Environment section, click Preferences. Select Computer Vision System
Toolbox.

Parallel Computing Toolbox Support

Several Computer Vision System Toolbox functions support parallel computing using
multiple MATLAB workers. Select the Use Parallel check box to enable parallel
computing when possible.

 Computer Vision System Toolbox Preferences

2-5

Parallel computing functionality requires a Parallel Computing Toolbox™ license and an
open MATLAB pool.

The functions and methods listed below take an optional logical input parameter,
'UseParallel' to control whether the individual function can use parfor. Set this
logical to 'true' to enable parallel processing for the function or method.

• bagOfFeatures
• encode (bagOfFeatures)

• trainImageCategoryClassifier

• imageCategoryClassifier
• predict (imageCategoryClassifier)

See parpool for details on how to create a special job on a pool of workers, and connect
the MATLAB client to the parallel pool.

3

Coordinate Systems

3 Coordinate Systems

3-2

Coordinate Systems

You can specify locations in images using various coordinate systems. Coordinate
systems are used to place elements in relation to each other. Coordinates in pixel and
spatial coordinate systems relate to locations in an image. Coordinates in 3-D coordinate
systems describe the 3-D positioning and origin of the system.

Pixel Indices

Pixel coordinates enable you to specify locations in images. In the pixel coordinate
system, the image is treated as a grid of discrete elements, ordered from top to bottom
and left to right.

For pixel coordinates, the number of rows, r, downward, while the number of columns, c,
increase to the right. Pixel coordinates are integer values and range from 1 to the length
of the row or column. The pixel coordinates used in Computer Vision System Toolbox
software are one-based, consistent with the pixel coordinates used by Image Processing
Toolbox™ and MATLAB. For more information on the pixel coordinate system, see “Pixel
Indices” in the Image Processing Toolbox documentation.

Spatial Coordinates

Spatial coordinates enable you to specify a location in an image with greater granularity
than pixel coordinates. Such as, in the pixel coordinate system, a pixel is treated as a
discrete unit, uniquely identified by an integer row and column pair, such as (3,4). In
the spatial coordinate system, locations in an image are represented in terms of partial
pixels, such as (3.3, 4.7).

 Coordinate Systems

3-3

For more information on the spatial coordinate system, see “Spatial Coordinates” in the
Image Processing Toolbox documentation.

3-D Coordinate Systems

When you reconstruct a 3-D scene, you can define the resulting 3-D points in one of two
coordinate systems. In a camera-based coordinate system, the points are defined relative
to the center of the camera. In a calibration pattern-based coordinate system, the points
are defined relative to a point in the scene.

The Computer Vision System Toolbox functions use the right-handed world coordinate
system. In this system, the x-axis points to the right, the y-axis points down, and the z-
axis points away from the camera. To display 3-D points, use pcshow.

Camera-Based Coordinate System

Points represented in a camera-based coordinate system are described with the origin
located at the optical center of the camera.

X

Y

Z

3 Coordinate Systems

3-4

In a stereo system, the origin is located at the optical center of Camera 1.

X

Y

Z

camera 1 camera 2

When you reconstruct a 3-D scene using a calibrated stereo camera, the
reconstructScene and triangulate functions return 3-D points with the origin at
the optical center of Camera 1. When you use Kinect® images, the depthToPointCloud
function returns 3-D points with the origin at the center of the RGB camera.

Calibration Pattern-Based Coordinate System

Points represented in a calibration pattern-based coordinate system are described with
the origin located at the (0,0) location of the calibration pattern.

Z

X

Y

When you reconstruct a 3-D scene from multiple views containing a calibration pattern,
the resulting 3-D points are defined in the pattern-based coordinate system. The “Stereo
Calibration and Scene Reconstruction” example shows how to reconstruct a 3-D scene
from a pair of 2-D images containing a checkerboard pattern.

Related Examples
• “Measuring Planar Objects with a Calibrated Camera”

 Coordinate Systems

3-5

• “Stereo Calibration and Scene Reconstruction”
• “Depth Estimation From Stereo Video”
• “Structure From Motion From Two Views”

4

System Objects

• “What Is a System Toolbox?” on page 4-2
• “What Are System Objects?” on page 4-3
• “System Objects vs. MATLAB Functions” on page 4-5
• “System Design and Simulation in MATLAB” on page 4-8
• “System Design and Simulation in Simulink” on page 4-9
• “System Objects in MATLAB Code Generation” on page 4-10
• “System Objects Methods That Support Code Generation” on page 4-16
• “System Objects in Simulink” on page 4-18
• “System Object Methods” on page 4-19
• “System Design in MATLAB Using System Objects” on page 4-22
• “System Design in Simulink Using System Objects” on page 4-29

4 System Objects

4-2

What Is a System Toolbox?

System Toolbox products provide algorithms and tools for designing, simulating,
and deploying dynamic systems in MATLAB and Simulink. These toolboxes contain
MATLAB functions, System objects, and Simulink blocks that deliver the same design
and verification capabilities across MATLAB and Simulink, enabling more effective
collaboration among system designers. Available System Toolbox products include:

• DSP System Toolbox™
• Communications System Toolbox™
• Computer Vision System Toolbox
• Phased Array System Toolbox™

System Toolboxes support floating-point and fixed-point streaming data simulation
for both sample- and frame-based data. They provide a programming environment for
defining and executing code for various aspects of a system, such as initialization and
reset. System Toolboxes also support code generation for a range of system development
tasks and workflows, such as:

• Rapid development of reusable IP and test benches
• Sharing of component libraries and systems models across teams
• Large system simulation
• C-code generation for embedded processors
• Finite wordlength effects modeling and optimization
• Ability to prototype and test on real-time hardware

 What Are System Objects?

4-3

What Are System Objects?

A System object™ is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)
• C code generation (requires a MATLAB Coder™ or Simulink Coder license)
• HDL code generation (requires an HDL Coder™ license)
• Executable files or shared libraries generation (requires a MATLAB Compiler™

license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

4 System Objects

4-4

In addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define System Objects”.

 System Objects vs. MATLAB Functions

4-5

System Objects vs. MATLAB Functions

In this section...

“System Objects vs. MATLAB Functions” on page 4-5
“Process Audio Data Using Only MATLAB Functions Code” on page 4-5
“Process Audio Data Using System Objects” on page 4-6

System Objects vs. MATLAB Functions

Many System objects have MATLAB function counterparts. For simple, one-time
computations use MATLAB functions. However, if you need to design and simulate
a system with many components, use System objects. Using System objects is also
appropriate if your computations require managing internal states, have inputs that
change over time or process large streams of data.

Building a dynamic system with different execution phases and internal states using
only MATLAB functions would require complex programming. You would need code to
initialize the system, validate data, manage internal states, and reset and terminate
the system. System objects perform many of these managerial operations automatically
during execution. By combining System objects in a program with other MATLAB
functions, you can streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions Code

This example shows how to write MATLAB function-only code for reading audio data.

The code reads audio data from a file, filters it, and then plays the filtered audio data.
The audio data is read in frames. This code produces the same result as the System
objects code in the next example, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Obtain the total number of samples and the sampling rate from the source file.

audioInfo = audioinfo(fname);

maxSamples = audioInfo.TotalSamples;

fs = audioInfo.SampleRate;

4 System Objects

4-6

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the while loop
index.

frameSize = 1024;

nIdx = 1;

Define the while loop to process the audio data.

while nIdx <= maxSamples(1)-frameSize+1

 audio = audioread(fname,[nIdx nIdx+frameSize-1]);

 [y,z] = filter(b,1,audio,z);

 sound(y,fs);

 nIdx = nIdx+frameSize;

end

The loop uses explicit indexing and state management, which can be a tedious and error-
prone approach. You must have detailed knowledge of the states, such as, sizes and
data types. Another issue with this MATLAB-only code is that the sound function is not
designed to run in real time. The resulting audio is very choppy and barely audible.

Process Audio Data Using System Objects

This example shows how to write System objects code for reading audio data.

The code uses System objects from the DSP System Toolbox software to read audio data
from a file, filter it, and then play the filtered audio data. This code produces the same
result as the MATLAB code shown previously, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

 System Objects vs. MATLAB Functions

4-7

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

This System objects code avoids the issues present in the MATLAB-only code. Without
requiring explicit indexing, the file reader object manages the data frame sizes while
the filter manages the states. The audio player object plays each audio frame as it is
processed.

4 System Objects

4-8

System Design and Simulation in MATLAB

System objects allow you to design and simulate your system in MATLAB. You use
System objects in MATLAB as shown in this diagram.

1 Create individual components — Create the System objects to use in your system.
See “Create Components for Your System” on page 4-22 for information. In
addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define System Objects”.

2 Configure components — If necessary, change the objects’ property values to model
your particular system. All System object properties have default values that you
may be able to use without changing them. See “Configure Components for Your
System” on page 4-23 for information.

3 Assemble components into system — Write a MATLAB program that includes those
System objects, connecting them using MATLAB variables as inputs and outputs to
simulate your system. See “Assemble Components to Create Your System” on page
4-25 for information.

4 Run the system — Run your program, which uses the step method to run your
system’s System objects. You can change tunable properties while your system is
running. See “Run Your System” on page 4-26 and “Reconfigure Your System
During Runtime” on page 4-27 for information.

 System Design and Simulation in Simulink

4-9

System Design and Simulation in Simulink

You can use System objects in your model to simulate in Simulink.

1 Create a System object to be used in your model. See “Define New Kinds of System
Objects for Use in Simulink” on page 4-29 for information.

2 Test your new System object in MATLAB. See “Test New System Objects in
MATLAB” on page 4-34

3 Add the System object to your model using the MATLAB System block. See “Add
System Objects to Your Simulink Model” on page 4-35 for information.

4 Add other Simulink blocks as needed and connect the blocks to construct your
system.

5 Run the system

4 System Objects

4-10

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 4-10
“System Objects in codegen” on page 4-14
“System Objects in the MATLAB Function Block” on page 4-15
“System Objects in the MATLAB System Block” on page 4-15
“System Objects and MATLAB Compiler Software” on page 4-15

System Objects in Generated Code

You can generate C/C++ code in MATLAB from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate efficient
and compact code for deployment in desktop and embedded systems and accelerate
fixed-point algorithms. You do not need the MATLAB Coder product to generate code in
Simulink.

System Objects Code with Persistent Objects for Code Generation

function ex_system_codegen

% Find corresponding interest points between a pair of images using local

% neighborhoods.

% Declare System objects as persistent.

persistent colorSpaceConverter

% Initialize persistent System objects only once

% Do this with 'if isempty(persistent variable).'

% This condition will be false after the first time.

if isempty(colorSpaceConverter)

 % Create system objects. Pass property value arguments as constructor

 % arguments. Property values must be constants during compile time.

 colorSpaceConverter = vision.ColorSpaceConverter('Conversion',...

 'RGB to intensity');

end

% Declare functions called into MATLAB that do not generate

 System Objects in MATLAB Code Generation

4-11

% code as extrinsic.

coder.extrinsic('imread');

% The output of an extrinsic function is an mxArray - also called a MATLAB

% array. To use mxArrays returned by extrinsic functions, assign the

% mxArray to a variable whose type and size is defined.

imgLeft = zeros([300 400 3],'uint8');

imgRight = zeros([300 400 3],'uint8');

% Call extrinsic function

imgLeft = imread('viprectification_deskLeft.png');

imgRight = imread('viprectification_deskRight.png');

% Convert RGB to grayscale

I1 = step(colorSpaceConverter,imgLeft);

I2 = step(colorSpaceConverter,imgRight);

% Find corners

points1 = detectHarrisFeatures(I1);

points2 = detectHarrisFeatures(I2);

% Extract neighborhood features

[features1, valid_points1] = extractFeatures(I1,points1);

[features2, valid_points2] = extractFeatures(I2,points2);

% Match features

index_pairs = matchFeatures(features1, features2);

% Retrieve locations of corresponding points for each image

matchedPoints1 = valid_points1.Location(index_pairs(:,1),:);

matchedPoints2 = valid_points2.Location(index_pairs(:,2),:);

% Visualize corresponding points

coder.extrinsic('showMatchedFeatures')

figure;

showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);

For another detailed code generation example, see “Generate Code for MATLAB Handle
Classes and System Objects” in the MATLAB Coder product documentation.

Usage Rules and Limitations for System Objects for Generating Code

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

4 System Objects

4-12

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 32 inputs. A maximum of 8 dimensions per input
is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

 System Objects in MATLAB Code Generation

4-13

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For
getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.
• In MATLAB simulations, default values are shared across all instances of an object.

Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• System objects can contain cell arrays, but cell arrays cannot contain System objects.
• Global variables are allowed in a System object, unless you will be using that System

object in Simulink via the MATLAB System block. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• isLocked

• release

• reset

• set (for tunable properties)
• step

• For System objects that you define,

4 System Objects

4-14

Code generation support is available only for these methods:

• getDiscreteStateImpl

• getNumInputsImpl

• getNumOutputsImpl

• infoImpl

• isDoneImpl

• isInputDirectFeedThroughImpl

• outputImpl

• processTunedPropertiesImpl

• releaseImpl — Code is not generated automatically for the this method. To
release an object, you must explicitly call the release method in your code.

• resetImpl

• setupImpl

• stepImpl

• updateImpl

• validateInputsImpl

• validatePropertiesImpl

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any
other elements. You can then compile a MEX file from your MATLAB code by using
the codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for
more information.

 System Objects in MATLAB Code Generation

4-15

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any
MATLAB language function in a Simulink model. This model can then generate
embeddable code. System objects provide higher-level algorithms for code generation
than do most associated blocks. For more information, see “What Is a MATLAB Function
Block?” in the Simulink documentation.

System Objects in the MATLAB System Block

Using the MATLAB System block, you can include in a Simulink model individual
System objects that you create with a class definition file . The model can then generate
embeddable code. For more information, see “What Is the MATLAB System Block?” in
the Simulink documentation.

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

4 System Objects

4-16

System Objects Methods That Support Code Generation

In this section...

“Code Generation Supported System Objects Methods” on page 4-16
“Simulation-Only System Objects Methods” on page 4-16

Code Generation Supported System Objects Methods

Only the following methods are supported in code generation.

• getDiscreteStateImpl
• getNumInputsImpl
• getNumOutputsImpl
• isDoneImpl
• infoImpl
• isInputDirectFeedthroughImpl
• outputImpl
• processTunedPropertiesImpl
• releaseImpl — Code is not generated automatically for the this method. To release an

object, you must explicitly call the release method in your code.
• resetImpl
• setupImpl
• stepImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

Simulation-Only System Objects Methods

The following methods are for simulation only and do not support code generation.

• getDiscreteStateSpecificationImpl
• getHeaderImpl

 System Objects Methods That Support Code Generation

4-17

• getInputNamesImpl
• getIconImpl
• getOutputDataTypeImpl
• getOutputNamesImpl
• getOutputSizeImpl
• getPropertyGroupsImpl
• isInactivePropertyImpl
• isOutputComplexImpl
• loadObjectImpl
• propagatedInputComplexity
• propagatedInputDataType
• propagatedInputFixedSize
• propagatedInputSize
• saveObjectImpl
• supportsMultipleInstanceImpl

4 System Objects

4-18

System Objects in Simulink

In this section...

“System Objects in the MATLAB Function Block” on page 4-18
“System Objects in the MATLAB System Block” on page 4-18

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

System Objects in the MATLAB System Block

You can include individual System objects that you create with a class definition file
into Simulink using the MATLAB System block. This provides one way to add your
own algorithm blocks into your Simulink models. For information, see “System Object
Integration” in the Simulink documentation.

 System Object Methods

4-19

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-19
“The Step Method” on page 4-19
“Common Methods” on page 4-20

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the
step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 4-20.

4 System Objects

4-20

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

reset Resets the internal states of a locked object to the initial values
for that object and leaves the object locked

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.

 System Object Methods

4-21

Method Description

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

For a complete list of methods for writing new System objects, see “System Objects
Methods for Defining New Objects”.

4 System Objects

4-22

System Design in MATLAB Using System Objects

In this section...

“Create Components for Your System” on page 4-22
“Configure Components for Your System” on page 4-23
“Assemble Components to Create Your System” on page 4-25
“Run Your System” on page 4-26
“Reconfigure Your System During Runtime” on page 4-27

Create Components for Your System

This example shows how to create components for a system that finds the edges of objects
in a video stream.

This example shows how to use System objects that are predefined in the software.
You can also create your own System objects (see “Define System Objects”). If you use a
function to create and use a System object, specify the object creation using conditional
code. This will prevent errors if that function is called within a loop.

This example shows how to set up your system. The particular predefined components
you need are:

• vision.VideoFileReader — Read the file of video data
• vision.EdgeDetector — Detect the edges in the video data
• vision.AlphaBlender — Overlay edges onto the original video images
• vision.VideoPlayer — Play the video

First, you create the component objects, using default property settings. You create three
VideoPlayer objects to play the original video, the edges, and the edges overlaid on the
original video.

hVideoSrc = vision.VideoFileReader;

hEdge = vision.EdgeDetector;

hAB = vision.AlphaBlender;

hVideoOrig = vision.VideoPlayer;

hVideoEdges = vision.VideoPlayer;

hVideoOverlay = vision.VideoPlayer

 System Design in MATLAB Using System Objects

4-23

Next, you configure each System object for your system.

Configure Components for Your System

When to Configure Components

If you did not set an object's properties when you created it and do not want to use
default values, you must explicitly set those properties. Some properties allow you to
change their values while your system is running. See “Reconfigure Your System During
Runtime” on page 4-27 for information.

Most properties are independent of each other. However, some System object properties
enable or disable another property or limit the values of another property. To avoid
errors or warnings, you should set the controlling property before setting the dependent
property.

Display Component Property Values

To display the current property values for an object, type that object’s handle name at
the command line (such as audioIn). To display the value of a specific property, type
objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values

This example shows how to configure System object property values.

For the video file reader object, specify the file to read and set the image color space.

hVideoSrc.Filename = 'vipmen.avi';

hVideoSrc.ImageColorSpace = 'Intensity';

For the edge detector object, specify the edge detection method, the threshold and
threshold source, and whether to use edge thinning.

hEdge.Method = 'Prewitt';

hEdge.ThresholdSource = 'Property';

hEdge.Threshold = 15/256;

hEdge.EdgeThinning = true;

For the alpha blender object, specify the type of operation to use.

hAB.Operation = 'Highlight selected pixels';

4 System Objects

4-24

For the video player objects, specify the names, the window size, and the window
position.

WindowSize = [190 150];

hVideoOrig.Name = 'Original';

hVideoOrig.Position = [10 hVideoOrig.Position(2) WindowSize];

hVideoEdges.Name = 'Edges';

hVideoEdges.Position = [210 hVideoOrig.Position(2) WindowSize];

hVideoOverlay.Name = 'Overlay';

hVideoOverlay.Position = [410 hVideoOrig.Position(2) WindowSize];

Create and Configure Components at the Same Time

This example shows how to create your System object components and configure
the desired properties at the same time. To avoid errors or warnings for dependent
properties, you should set the controlling property before setting the dependent property.
Use this procedure if you have not already created your components.

For the video file reader object, specify the file to read and set the image color space.

hVideoSrc = vision.VideoFileReader('vipmen.avi', ...

 'ImageColorSpace', 'Intensity');

For the edge detector object, specify the edge detection method, the threshold and
threshold source, and whether to use edge thinning.

hEdge = vision.EdgeDetector('Method','Prewitt',...

 'ThresholdSource','Property', ...

 'Threshold',15/256,'EdgeThinning',true);

For the alpha blender object, specify the type of operation to use.

hAB = vision.AlphaBlender('Operation', 'Highlight selected pixels');

For the video player objects, specify the names, the window size, and the window
position.

WindowSize = [190 150];

hVideoOrig = vision.VideoPlayer('Name', 'Original');

hVideoOrig.Position = [10 hVideoOrig.Position(2) WindowSize];

hVideoEdges = vision.VideoPlayer('Name', 'Edges');

 System Design in MATLAB Using System Objects

4-25

hVideoEdges.Position = [210 hVideoOrig.Position(2) WindowSize];

hVideoOverlay = vision.VideoPlayer('Name', 'Overlay');

hVideoOverlay.Position = [410 hVideoOrig.Position(2) WindowSize];

After you create the components, you can assemble them in your system.

Assemble Components to Create Your System

• “Connect Inputs and Outputs” on page 4-25
• “Code for the Whole System” on page 4-25

Connect Inputs and Outputs

After you have determined the components you need and have created and configured
your System objects, assemble your system. You use the System objects like other
MATLAB variables and include them in MATLAB code. You can pass MATLAB variables
into and out of System objects.

The main difference between using System objects and using functions is the step
method. The step method is the processing command for each System object and is
customized for that specific System object. This method initializes your objects and
controls data flow and state management of your system. You typically use step within a
loop.

You use the output from an object’s step method as the input to another object’s step
method. For some System objects, you can use properties of those objects to change the
number of inputs or outputs. To verify that the appropriate number of input and outputs
are being used, you can use getNumInputs and getNumOutputs on any System object.
For information on all available System object methods, see “System Object Methods” on
page 4-19.

Code for the Whole System

This example shows how to write the full code for edge detection.

You can type this code on the command line or put it into a program file.

hVideoSrc = vision.VideoFileReader('vipmen.avi', ...

 'ImageColorSpace','Intensity');

hEdge = vision.EdgeDetector('Method','Prewitt', ...

 'ThresholdSource','Property', ...

4 System Objects

4-26

 'Threshold',35/256,'EdgeThinning',true);

hAB = vision.AlphaBlender('Operation','Highlight selected pixels');

WindowSize = [190 150];

hVideoOrig = vision.VideoPlayer('Name','Original');

hVideoOrig.Position = [10 hVideoOrig.Position(2) WindowSize];

hVideoEdges = vision.VideoPlayer('Name','Edges');

hVideoEdges.Position = [210 hVideoOrig.Position(2) WindowSize];

hVideoOverlay = vision.VideoPlayer('Name','Overlay');

hVideoOverlay.Position = [410 hVideoOrig.Position(2) WindowSize];

while ~isDone(hVideoSrc)

 frame = step(hVideoSrc); % Read input video

 edges = step(hEdge, frame); % Edge detection

 composite = step(hAB, frame, edges) % AlphaBlender

 step(hVideoOrig,frame); % Display original

 step(hVideoEdges,edges); % Display edges

 step(hVideoOverlay,composite); % Display edges overlayed

end

release(hVideoSrc);

The while loop uses the isDone method to read through the entire file. The step method
is used on each object inside the loop.

Now, you are ready to run your system.

Run Your System

• “How to Run Your System” on page 4-26
• “What You Cannot Change While Your System Is Running” on page 4-26

How to Run Your System

Run your code either by typing directly at the command line or running a file containing
your program. When you run the code for your system, the step method instructs each
object to process data through that object.

What You Cannot Change While Your System Is Running

The first call to the step method initializes and then locks your object. When a System
object has started processing data, it is locked to prevent changes that would disrupt its

 System Design in MATLAB Using System Objects

4-27

processing. Use the isLocked method to verify whether an object is locked. When the
object is locked, you cannot change:

• Number of inputs or outputs
• Data type of inputs or outputs
• Data type of any tunable property
• Dimensions of inputs or tunable properties, except for System objects that support

variable-size data
• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your System
During Runtime” on page 4-27.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-27
• “Change a Tunable Property in Your System” on page 4-27
• “Change Input Complexity or Dimensions” on page 4-28

When Can You Change Component Properties?

When a System object has started processing data, it is locked to prevent changes that
would disrupt its processing. You can use isLocked on any System object to verify
whether it is locked or not. When processing is complete, you can use the release
method to unlock a System object.

Some object properties are tunable, which enables you to change them even if the object
is locked. Unless otherwise specified, System objects properties are nontunable. Refer
to the object’s reference page to determine whether an individual property is tunable.
Typically, tunable properties are not critical to how the System object processes data.

Change a Tunable Property in Your System

This example shows how to change a tunable property.

You can change the threshold value as your code is running by replacing the while loop
with the following while loop. The change takes effect the next time the step method is
called (such as, at the next iteration of the while loop).

while ~isDone(hVideoSrc)

4 System Objects

4-28

 frame = step(hVideoSrc); % Read input video

 edges = step(hEdge, frame); % Edge detection

 composite = step(hAB, frame, edges) % AlphaBlender

 hEdge.Threshold = hEdge.Threshold-0.0005; % Tune threshold

 step(hVideoOrig,frame); % Display original

 step(hVideoEdges,edges); % Display edges

 step(hVideoOverlay,composite); % Display edges overlayed

end

Change Input Complexity or Dimensions

During simulation, some System objects do not allow complex data if the object was
initialized with real data. You cannot change any input complexity during code
generation.

You can change the value of a tunable property without a warning or error being
produced. For all other changes at run time, an error occurs.

 System Design in Simulink Using System Objects

4-29

System Design in Simulink Using System Objects
In this section...

“Define New Kinds of System Objects for Use in Simulink” on page 4-29
“Test New System Objects in MATLAB” on page 4-34
“Add System Objects to Your Simulink Model” on page 4-35

Define New Kinds of System Objects for Use in Simulink

• “Define System Object with Block Customizations” on page 4-29
• “Define System Object with Nondirect Feedthrough” on page 4-32

A System object is a component you can use to create your system in MATLAB. You can
write the code in MATLAB and use that code to create a block in Simulink. To define
your own System object, you write a class definition file, which is a text-based MATLAB
file that contains the code defining your object. See “System Object Integration” in the
Simulink documentation.

Define System Object with Block Customizations

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and is
similar to the System Identification Using MATLAB System Blocks Simulink example.

This example shows how to create a class definition text file to define your System
object. The code in this example creates a least mean squares (LMS) filter and includes
customizations to the block icon and dialog appearance.

Note: Instead of manually creating your class definition file, you can use the New >
System Object > Simulink Extension menu option to open a template. This template
includes customizations of the System object for use in the Simulink MATLAB System
block. You edit the template file, using it as guideline, to create your own System object.

On the first line of the class definition file, specify the name of your System object and
subclass from both matlab.System and matlab.system.mixin.CustomIcon. The
matlab.System base class enables you to use all the basic System object methods and
specify the block input and output names, title, and property groups. The CustomIcon
mixin class enables the method that lets you specify the block icon.

4 System Objects

4-30

Add the appropriate basic System object methods to set up, reset, set the number of
inputs and outputs, and run your algorithm. See the reference pages for each method and
the full class definition file below for the implementation of each of these methods.

• Use the setupImpl method to perform one-time calculations and initialize variables.
• Use the stepImpl method to implement the block’s algorithm.
• Use the resetImpl method to reset the state properties or DiscreteState

properties.
• Use the getNumInputsImpl and getNumOutputsImpl methods to specify the

number of inputs and outputs, respectively.

Add the appropriate CustomIcon methods to define the appearance of the MATLAB
System block in Simulink. See the reference pages for each method and the full class
definition file below for the implementation of each of these methods.

• Use the getHeaderImpl method to specify the title and description to display on the
block dialog.

• Use the getPropertyGroupsImpl method to specify groups of properties to display
on the block dialog.

• Use the getIconImpl method to specify the text to display on the block icon.
• Use the getInputNamesImpl and getOutputNamesImpl methods to specify the

labels to display for the block input and output ports.

The full class definition file for the least mean squares filter is:

classdef lmsSysObj < matlab.System &...

 matlab.system.mixin.CustomIcon

 % lmsSysObj Least mean squares (LMS) adaptive filtering.

 % #codegen

 properties

 % Mu Step size

 Mu = 0.005;

 end

 properties (Nontunable)

 % Weights Filter weights

 Weights = 0;

 % N Number of filter weights

 N = 32;

 end

 System Design in Simulink Using System Objects

4-31

 properties (DiscreteState)

 X;

 H;

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 function [y, e_norm] = stepImpl(obj,d,u)

 tmp = obj.X(1:obj.N-1);

 obj.X(2:obj.N,1) = tmp;

 obj.X(1,1) = u;

 y = obj.X'*obj.H;

 e = d-y;

 obj.H = obj.H + obj.Mu*e*obj.X;

 e_norm = norm(obj.Weights'-obj.H);

 end

 function resetImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 end

 % Block icon and dialog customizations

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header(...

 'lmsSysObj', ...

 'Title', 'LMS Adaptive Filter');

 end

 function groups = getPropertyGroupsImpl

 upperGroup = matlab.system.display.SectionGroup(...

 'Title','General',...

 'PropertyList',{'Mu'});

 lowerGroup = matlab.system.display.SectionGroup(...

 'Title','Coefficients', ...

 'PropertyList',{'Weights','N'});

4 System Objects

4-32

 groups = [upperGroup,lowerGroup];

 end

 end

 methods (Access = protected)

 function icon = getIconImpl(~)

 icon = sprintf('LMS Adaptive\nFilter');

 end

 function [in1name, in2name] = getInputNamesImpl(~)

 in1name = 'Desired';

 in2name = 'Actual';

 end

 function [out1name, out2name] = getOutputNamesImpl(~)

 out1name = 'Output';

 out2name = 'EstError';

 end

 end

end

Define System Object with Nondirect Feedthrough

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and
uses feedback loops. It is similar to the System Identification Using MATLAB System
Blocks Simulink example. For information on feedback loops, see “Use System Objects in
Feedback Loops”.

This example shows how to create a class definition text file to define your System object.
The code in this example creates an integer delay and includes customizations to the
block icon. It implements a System object that you can use for nondirect feedthrough.

On the first line of the class definition file, subclass from matlab.System and
matlab.system.mixin.CustomIcon. The matlab.System base class enables you to
use all the basic System object methods and specify the block input and output names,
title, and property groups. The CustomIcon mixin class enables the method that lets you
specify the block icon. The Nondirect mixin enables the methods that let you specify
how the block is updated and what it outputs.

Add the appropriate basic System object methods to set up and reset the object and set
and validate the properties. Since this object supports nondirect feedthrough, you do not
implement the stepImpl method. You implement the updateImpl and outputImpl

 System Design in Simulink Using System Objects

4-33

methods instead. See the reference pages for each method and the full class definition file
below for the implementation of each of these methods.

• Use the setupImpl method to initialize some of the object’s properties.
• Use the resetImpl method to reset the property states.
• Use the validatePropertiesImpl method to check that the property values are

valid.

Add the following Nondirect mixin class methods instead of the stepImpl method to
specify how the block updates its state and its output. See the reference pages and the
full class definition file below for the implementation of each of these methods.

• Use the outputImpl method to implement code to calculate the block output.
• Use the updateImpl method to implement code to update the block’s internal states.
• Use the isInputDirectFeedthroughImpl method to specify that the block is not

direct feedthrough. Its inputs do not directly affect its outputs.

Add the getIconImpl method to define the block icon when it is used in Simulink via
the MATLAB System block. See the reference page and the full class definition file below
for the implementation of this method.

The full class definition file for the delay is:

classdef intDelaySysObj < matlab.System &...

 matlab.system.mixin.Nondirect &...

 matlab.system.mixin.CustomIcon

 % intDelaySysObj Delay input by specified number of samples.

 % #codegen

 properties

 % InitialOutput Initial output

 InitialOutput = 0;

 end

 properties (Nontunable)

 % NumDelays Number of delays

 NumDelays = 1;

 end

 properties (DiscreteState)

 PreviousInput;

 end

4 System Objects

4-34

 methods (Access = protected)

 function setupImpl(obj, ~)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function [y] = outputImpl(obj, ~)

 % Output does not directly depend on input

 y = obj.PreviousInput(end);

 end

 function updateImpl(obj, u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

 function validatePropertiesImpl(obj)

 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))

 error('Number of delays must be positive non-zero scalar value.');

 end

 if (numel(obj.InitialOutput)>1)

 error('Initial output must be scalar value.');

 end

 end

 function resetImpl(obj)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function icon = getIconImpl(~)

 icon = sprintf('Integer\nDelay');

 end

 end

end

Test New System Objects in MATLAB

1 Create an instance of your new System object. For example, create an instance of the
lmsSysObj.

s = lmsSysObj;

 System Design in Simulink Using System Objects

4-35

2 Run the step method on the object multiple times with different inputs. This tests for
syntax errors and other possible issues before you add it to Simulink. For example,

desired = 0;

actual = 0.2;

step(s,desired,actual);

Add System Objects to Your Simulink Model

1 Add your System objects to your Simulink model by using the MATLAB System block
as described in “Mapping System Objects to Block Dialog Box”.

2 Add other Simulink blocks, connect them, and configure any needed parameters to
complete your model as described in the Simulink documentation. See the System
Identification for an FIR System Using MATLAB System Blocks Simulink example.

3 Run your model in the same way you run any Simulink model.

5

Strategies for Real-Time Video
Processing in Simulink

• “Optimizing Your Implementation” on page 5-2
• “Developing Your Models” on page 5-4

5 Strategies for Real-Time Video Processing in Simulink

5-2

Optimizing Your Implementation

Video processing is computationally intensive, and the ability to perform real-time video
processing is affected by the following factors:

• Hardware capability
• Model complexity
• Model implementation
• Input data size

Optimizing your implementation is a crucial step toward real-time video processing. The
following tips can help improve the performance of your model:

• Minimize the number of blocks in your model.
• Process only the regions of interest to reduce the input data size.
• Use efficient algorithms or the simplest version of an algorithm that achieves the

desired result.
• Use efficient block parameter settings. However, you need to decide whether these

settings best suit your algorithm. For example, the most efficient block parameter
settings might not yield the most accurate results. You can find out more about
individual block parameters and their effect on performance by reviewing specific
block reference pages.

The two following examples show settings that make each block's operation the least
computationally expensive:

• Resize block — Interpolation method = Nearest neighbor
• Blocks that support fixed point — On the Fixed-Point tab, Overflow mode =

Wrap

• Choose data types carefully.

• Avoid data type conversions.
• Use the smallest data type necessary to represent your data to reduce memory

usage and accelerate data processing.

In simulation mode, models with floating-point data types run faster than models
with fixed-point data types. To speed up fixed-point models, you must run them
in accelerator mode. Simulink contains additional code to process all fixed-point

 Optimizing Your Implementation

5-3

data types. This code affects simulation performance. After you run your model
in accelerator mode or generate code for your target using the Simulink Coder,
the fixed-point data types are specific to the choices you made for the fixed-point
parameters. Therefore, the fixed-point model and generated code run faster.

5 Strategies for Real-Time Video Processing in Simulink

5-4

Developing Your Models

Use the following general process guidelines to develop real-time video processing models
to run on embedded targets. By optimizing the model at each step, you improve its final
performance.

1 Create the initial model and optimize the implementation algorithm. Use floating-
point data types so that the model runs faster in simulation mode. If you are working
with a floating-point processor, go to step 3.

2 If you are working with a fixed-point processor, gradually change the model data
types to fixed point, and run the model after every modification.

During this process, you can use data type conversion blocks to isolate the
floating point sections of the model from the fixed-point sections. You should see a
performance improvement if you run the model in accelerator mode.

3 Remove unnecessary sink blocks, including scopes, and blocks that log data to files.
4 Compile the model for deployment on the embedded target.

6

Data Type Support

6 Data Type Support

6-2

Block Data Type Support

The Computer Vision System Toolbox Data Type Support Table is available through the
Simulink model Help menu. The table provides information about data type support and
code generation coverage for all Computer Vision System Toolbox blocks. Select Help >
Simulink> Block Data Types & Code Generation Support > Computer Vision
System Toolbox.

 Fixed-Point Support for MATLAB System Objects

6-3

Fixed-Point Support for MATLAB System Objects

In this section...

“Getting Information About Fixed-Point System Objects” on page 6-3
“Displaying Fixed-Point Properties” on page 6-4
“Setting System Object Fixed-Point Properties” on page 6-5

For information on working with Fixed-Point features, refer to the “Fixed-Point”topic.

Getting Information About Fixed-Point System Objects

System objects that support fixed-point data processing have fixed-
point properties, which you can display for a particular object by typing
vision.<ObjectName>.helpFixedPoint at the command line.

See “Displaying Fixed-Point Properties” on page 6-4 to set the display of System
object fixed-point properties.

The following Computer Vision System Toolbox objects support fixed-point data
processing.

Fixed-Point Data Processing Support
vision.AlphaBlender

vision.Autocorrelator

vision.Autothresholder

vision.BlobAnalysis

vision.BlockMatcher

vision.ContrastAdjuster

vision.Convolver

vision.CornerDetector

vision.Crosscorrelator

vision.DCT

vision.Deinterlacer

vision.DemosaicInterpolator

vision.EdgeDetector

vision.FFT

vision.GeometricRotator

6 Data Type Support

6-4

vision.GeometricScaler

vision.GeometricTranslator

vision.Histogram

vision.HoughLines

vision.HoughTransform

vision.IDCT

vision.IFFT

vision.ImageDataTypeConverter

vision.ImageFilter

vision.MarkerInserter

vision.Maximum

vision.Mean

vision.Median

vision.MedianFilter

vision.Minimum

vision.OpticalFlow

vision.PSNR

vision.Pyramid

vision.SAD

vision.ShapeInserter

vision.Variance

Displaying Fixed-Point Properties

You can control whether the software displays fixed-point properties with either of the
following commands:

• matlab.system.showFixedPointProperties

• matlab.system.hideFixedPointProperties

at the MATLAB command line. These commands set the Show fixed-point properties
display option. You can also set the display option directly via the MATLAB preferences
dialog box. Select the Preferences icon from the MATLAB desktop, and then select
System Objects. Finally, select or deselect Show fixed-point properties.

 Fixed-Point Support for MATLAB System Objects

6-5

If an object supports fixed-point data processing, its fixed-point properties are active
regardless of whether they are displayed or not.

Setting System Object Fixed-Point Properties

A number of properties affect the fixed-point data processing used by a System object.
Objects perform fixed-point processing and use the current fixed-point property settings
when they receive fixed-point input.

You change the values of fixed-point properties in the same way as you change any
System object property value. You also use the Fixed-Point Designer numerictype
object to specify the desired data type as fixed-point, the signedness, and the word- and
fraction-lengths.

6 Data Type Support

6-6

In the same way as for blocks, the data type properties of many System objects can set
the appropriate word lengths and scalings automatically by using full precision. System
objects assume that the target specified on the Configuration Parameters Hardware
Implementation target is ASIC/FPGA.

If you have not set the property that activates a dependent property and you attempt
to change that dependent property, a warning message displays. For example, for
the vision.EdgeDetector object, before you set CustomProductDataType to
numerictype(1,16,15) you must set ProductDataType to 'Custom'.

Note: System objects do not support fixed-point word lengths greater than 128 bits.

For any System object provided in the Toolbox, the fimath settings for any fimath
attached to a fi input or a fi property are ignored. Outputs from a System object never
have an attached fimath.

